2025-05-28-12-07
xChemAgents: Agentic AI for Explainable Quantum Chemistry
Abstract
arXiv:2505.20574v1 Announce Type: new Abstract: Recent progress in multimodal graph neural networks has demonstrated that augmenting atomic XYZ geometries with textual chemical descriptors can enhance predictive accuracy across a range of electronic and thermodynamic properties. However, naively appending large sets of heterogeneous descriptors often degrades performance on tasks sensitive to molecular shape or symmetry, and undermines interpretability. xChemAgents proposes a cooperative agent framework that injects physics-aware reasoning into multimodal property prediction. xChemAgents comprises two language-model-based agents: a Selector, which adaptively identifies a sparse, weighted subset of descriptors relevant to each target, and provides a natural language rationale; and a Validator, which enforces physical constraints such as unit consistency and scaling laws through iterative dialogue. On standard benchmark datasets, xChemAgents achieves up to a 22% reduction in mean absolute error over strong baselines, while producing faithful, human-interpretable explanations. Experiment results highlight the potential of cooperative, self-verifying agents to enhance both accuracy and transparency in foundation-model-driven materials science. The implementation and accompanying dataset are available anonymously at https://github.com/KurbanIntelligenceLab/xChemAgents.
摘要
多模态图神经网络的最新进展表明,通过将原子XYZ几何结构与文本化学描述符相结合,可以提高对多种电子和热力学性质的预测准确性。然而,简单地附加大量异构描述符往往会降低对分子形状或对称性敏感任务的性能,并损害可解释性。xChemAgents提出了一种协作代理框架,将物理感知推理注入多模态性质预测中。xChemAgents包含两个基于语言模型的代理:选择器(Selector)自适应地识别与每个目标相关的稀疏加权描述符子集,并提供自然语言依据;验证器(Validator)通过迭代对话强制执行物理约束,如单位一致性和标度律。在标准基准数据集上,xChemAgents相较于强基线实现了高达22%的平均绝对误差降低,同时生成忠实、人类可解释的说明。实验结果凸显了协作自验证代理在提升基础模型驱动材料科学的准确性和透明度方面的潜力。实现代码及配套数据集可通过匿名链接https://github.com/KurbanIntelligenceLab/xChemAgents获取。
Manalyzer: End-to-end Automated Meta-analysis with Multi-agent System
Abstract
arXiv:2505.20310v1 Announce Type: new Abstract: Meta-analysis is a systematic research methodology that synthesizes data from multiple existing studies to derive comprehensive conclusions. This approach not only mitigates limitations inherent in individual studies but also facilitates novel discoveries through integrated data analysis. Traditional meta-analysis involves a complex multi-stage pipeline including literature retrieval, paper screening, and data extraction, which demands substantial human effort and time. However, while LLM-based methods can accelerate certain stages, they still face significant challenges, such as hallucinations in paper screening and data extraction. In this paper, we propose a multi-agent system, Manalyzer, which achieves end-to-end automated meta-analysis through tool calls. The hybrid review, hierarchical extraction, self-proving, and feedback checking strategies implemented in Manalyzer significantly alleviate these two hallucinations. To comprehensively evaluate the performance of meta-analysis, we construct a new benchmark comprising 729 papers across 3 domains, encompassing text, image, and table modalities, with over 10,000 data points. Extensive experiments demonstrate that Manalyzer achieves significant performance improvements over the LLM baseline in multi meta-analysis tasks. Project page: https://black-yt.github.io/meta-analysis-page/ .
摘要
元分析是一种系统性研究方法,通过整合多个现有研究的数据以得出综合结论。这种方法不仅能减轻单个研究固有的局限性,还能通过集成数据分析促进新发现。传统元分析涉及文献检索、论文筛选和数据提取等复杂多阶段流程,需要耗费大量人力与时间。尽管基于大语言模型的方法能加速某些环节,但仍面临重大挑战,例如论文筛选和数据提取中的幻觉问题。本文提出多智能体系统Manalyzer,通过工具调用实现端到端自动化元分析。该系统采用的混合评审、分层提取、自证与反馈校验策略显著缓解了上述两类幻觉问题。为全面评估元分析性能,我们构建了包含3个领域(文本、图像和表格模态)729篇论文的新基准数据集,涵盖超10,000个数据点。大量实验表明,Manalyzer在多类元分析任务中较基线大语言模型实现了显著性能提升。项目页面:https://black-yt.github.io/meta-analysis-page/。